منابع مشابه
Formation and structure of V-Zr amorphous alloy thin films
Although the equilibrium phase diagram predicts that alloys in the central part of the V-Zr system should consist of V2Zr Laves phase with partial segregation of one element, it is known that under non-equilibrium conditions these materials can form amorphous structures. Here we examine the structures and stabilities of thin film V-Zr alloys deposited at room temperature by magnetron sputtering...
متن کاملCrystallization Kinetics Study in Al87Ni10La3 Amorphous Alloy
In this study, the crystallization behavior of melt-spun Al87Ni10La3 amorphous phase was investigated by using X-ray diffraction and non-isothermal differential thermal analysis techniques. The results demonstrated that the amorphous phase exhibited two-stage crystallization on heating, i.e., at first step the amorphous phase transforms into α-Al phase and at second step Al11La3 and Al3Ni inter...
متن کاملNanocrystallization in Co67Cr7Fe4Si8B14 Amorphous Alloy Ribbons
The nanocrystallization of Co67Fe4Cr7Si8B14 amorphous ribbons which prepared by planar flow melt spinning process (PFMS) was investigated. Crystallization of the ribbons was studied by differential thermal analysis (DTA), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The DTA result of amorphous ribbon at heating rate of 10˚C/min showedoccurrence of phase transitions in two...
متن کاملOxidation and crystallization of an amorphous Zr60Al15Ni25 alloy
The amorphous ternary metallic alloy Zr60Al15Ni25 was oxidized in dry oxygen in the temperature range 310 ±C to 410 ±C. Rutherford backscattering (RBS) and cross-sectional transmission electron microscopy (TEM) studies suggest that during this treatment an amorphous layer of zirconium-aluminum-oxide is formed at the surface. Nickel was depleted in the oxide and enriched in the amorphous alloy n...
متن کاملNon-isothermal Primary Crystallization Kinetics of the Amorphous Fe85.3B11P3Cu0.7 Alloy
In the present research, the primary crystallization kinetics of the amorphous Fe85.3B11P3Cu0.7 alloy was analyzed using non-isothermal DSC measurements. The average and local activation energies, Ea, were determined by different isokinetic and isoconversional methods. The results obtained for activation energy in this research, show that due to the complexity of the primary crystallization pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: physica status solidi (b)
سال: 1969
ISSN: 0370-1972,1521-3951
DOI: 10.1002/pssb.19690340206